Greetings, readers! Now that Amazon has disabled its popular ebook lending feature, we're more committed than ever to helping you find the best ways to borrow FREE or save big on the Kindle books that you want to read. Kindle Unlimited and Amazon Prime Reading offer members free reading access to over 1 million titles, including Kindle books, magazines, and audiobooks. Beginning soon, each day in this space we will feature "Today's FREEbies and Top Deals for Our Favorite Readers" to share top 5-star titles that are available for KU and Prime members to read FREE, plus a link to a 30-day FREE trial for Kindle Unlimited!

Lendle

Lendle is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com. As an Amazon Associates participant, we earn small amounts from qualifying purchases on the Amazon sites.

Apart from its participation in the Associates Program, Lendle is not affiliated with Amazon or Kindle in any other way. Amazon, Kindle and the Amazon and Kindle logos are trademarks of Amazon.com, Inc. or its affiliates. Certain content that appears on this website is provided by Amazon Services LLC. This content is provided "as is" and is subject to change or removal at any time. Lendle is published independently by Stephen Windwalker and Windwalker Media and is not endorsed by Amazon.com, Inc.

In this thesis, the scalability issues of Simple Network Management Protocol (SNMP) in optical network management are explored. It is important to understand the effect of varying the number of nodes, the request inter-arrival times and the polling interval on the performance of SNMP and the number of nodes that can be effectively managed. The current study explored the effect of varying these parameters in a controlled test environment using the OPNET simulation package. In addition, traffic analysis was performed on measured SNMP traffic and statistics were developed from the traffic analysis. With this understanding of SNMP traffic, an SNMPv1 model was defined and integrated into an OPNET network model to study the performance of SNMP. The simulation results obtained were useful in providing needed insight into the allowable number of nodes an optical network management system can effectively manage.

Genres for this book